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Simplicial Complexes 101

Simpl. deg. = 1

Simpl. deg. = 2
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Simplicial Complexes

What hinders application of homology to data?

Representation: it’s difficult to find an optimal representative
Memory and efficiency: the algorithm for computing homology grows with the 
number of simplices in the complex
Null model: There is a lack of samplers that could easily be used in practice.

Simplicial homology



● Random Simplicial Complexes
○ Simplicial Configuration Model

● Reducing the complexity of homology 
computation

● 1D-Homology and network 
communities
○ arXiv case study

Structure



Random Simplicial Complexes
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Erdos-Renyi inspired:
Random pure simplicial complexes [Linial-Meshulam (2006)]
Random simplicial complexes [Kahle (2009)]
Multi-parameter random simplicial complexes [Costa-Farber (2015)]

Exponential random graphs inspired:
Exponential random simplicial complex [Zuev et al. (2015)]

Preferential attachment for simplicial complexes:
Network geometry with flavor [Bianconi-Rahmede (2016)]

Configuration model:
Configuration model for pure simplicial complexes [Courtney-Bianconi (2016)]

Simplicial Complexes
Sampling
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It implies the following are fixed?

Configuration model
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Configuration model
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Bipartite graphs and simplicial complexes
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Bipartite graphs and simplicial complexes

Idea:

Use the configuration model for bipartite 
graphs and the maps to construct a 
sampling method for SCM.
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NOT VALID

Bipartite graphs and simplicial complexes

Idea:

Use the configuration model for bipartite 
graphs and the maps to construct a 
sampling method for SCM.
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Adding constraints

NOT VALID

First constraint: No multi-edges 

Multi-edges decrease the size of the maximal simplices.
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Adding constraints
Second constraint: No included neighborhoods

Included neighborhoods violate the maximality assumption of the 
facets.

NOT VALID
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Adding constraints
Constraints: 

No multi-edges 
No included neighborhoods

Then the acceptable configurations for the toy example are the following:
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Adding constraints

! Problem with rejection sampling: Far too many rejections! 

Loose upper bound :

Pr[reject] > exp[-0.5(〈d2〉/〈d〉− 1) (〈s2〉/〈s〉− 1)]
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Markov Chain Monte Carlo sampling
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Markov Chain Monte Carlo sampling
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Move set

1. Pick L∼P random edges in bipartite graph
P can be arbitrary, we use Pr[L = l] = exp[λl]/Z

2. Rewire edges. If multi-edge or included neighbors, reject.

Similar to [Miklós–Erdős–Soukup, Electron. J. Combin., 20, (2013)]

MCMC sampling: The details

● MCMC is uniform over Ω(d, s)
● Move set yields aperiodic chain
● Move set connects the space



EPFL Lausanne

Results - True systems
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Results - Random instances
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Concept for a null model

Null model

Is the quantity f(X) close to f(K) for random simplicial complexes 
X∼SCM[d(K), s(K)] ?

Pr[| f(K) − f(X)| < ] ≈ 1

K is typical, the local quantities (d,s) explain f.
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Concept for a null model

Pr[| f(K) − f(X)| < ] ≪ 1

Null model

Is the quantity f(X) close to f(K) for random simplicial complexes 
X∼SCM[d(K), s(K)] ?

K is atypical, K is organized beyond the local scale.
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Results on Betti numbers of real data 
sets
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Results on Betti numbers of real data 
sets



Reducing the algorithmic complexity
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Simplicial Complexes
homological hiccups

The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.
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Simplicial Complexes
homological hiccups

REDUCTION

The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.
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The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.

Simplicial Complexes
homological hiccups

S.C. REDUCTION
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Simplicial Complexes
homological hiccups

S.C. REDUCTION
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This method does NOT guarantee 
automatically that the new complex will 

have fewer simplices.

The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.
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The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.

Simplicial Complexes
homological hiccups

This method does NOT guarantee 
automatically that the new complex will 

have fewer simplices.
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Simplicial Complexes
homological hiccups

The computational complexity of homology is 

where m is the number of ALL simplices in the complex not only the maximal facets.

Exponential Zipf Poisson

Simplicial Configuration Model, J-G Young et. al. 2017 PRE



1D Homology and communities
Empirical proof of concept 
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The data set

Set of authors

List of categories

Date of publication

The data span 9 years, from 2007 to 2016, 
and are split according to the 18 major 
categories of arXiv. 

This major categories correspond to 
different thematic areas and thus can be 
used as rough representative of different 
scientific fields. 

Notice: Due to arXiv’s history, there is a bias 
toward mathematical and physical topics.
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The data set
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and are split according to the 18 major 
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used as rough representative of different 
scientific fields. 
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Facets size  and simplicial degree
Assess commonalities in the statistical properties of the different categories

Jensen-Shannon Divergence

where:
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Facets size  and simplicial degree
Assess commonalities in the statistical properties of the different categories

Jensen-Shannon Divergence

Simplicial degree Facets size
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Examples for the biggest connected component for each group. 

Facets size  and simplicial degree
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Facets size  and simplicial degree

Simplicial degree Facets size

Quantitative finance
Quantitative biology
Statistics
Mathematical physics
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Facets size  and simplicial degree

Simplicial degree Facets size

High energy physics
Physics
Nuclear physics
Astrophysics
General relativity
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Facets size  and simplicial degree

Simplicial degree Facets size

Homology equivalent simplicial complex



Homological Results
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Homology

We introduce a new quantity β1/n the ratio of the number of cycles over the number of nodes in the 
simplicial complex
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Homology
Cycle length distribution
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Group 1

Homology
Cycle length distribution
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Cycles length distribution

Group 2
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Community detection

SIMPLICIAL COMPLEX Homological cycles COMMUNITY detection
in underlying graph

Assumption: 
Homological cycles act as bridges between communities of the underlying graph
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Community detection

SCHAUB, Michael T., et al. The many facets of community detection in complex networks. App. Net. Sc, 2017.

Infomap
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Homology and Communities

If cycles do not act as bridges between communities, then 
we expect them to go in and out randomly.

But we can clearly see that as cycles get
longer the go through a larger number of
communities.
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Homology bridges communities?

y=m*x

Where m is the fraction 
of total edges between 
communities

UPPER BOUND

y = x

If cycles do not act as bridges between communities, then 
we expect them to go in and out randomly.

But we can clearly see that as cycles get
longer the go through a larger number of
communities.

We decide to this as lower bound to assess if a 
cycle act as bridge in a category, and the length
of the cycles as upper bound.
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Extending to Persistent Homology
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Future work



Young J.-G., Petri G., Vaccarino F. and Patania A.
"Construction of and efficient sampling from the simplicial configuration model" 
PRE 96 (3), 032312 (2017)
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