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Simplicial Complexes

e
A simplicial complex X is a collection of simplices such that:

e Vo € Xits faces are still in X,

e Yo, T € X, 0N Tis either the empty set or a face of both o and
T,
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Simplicial Complexes

The simplicial degree of a node in a simplicial complex is the number
if maximal simplices under inclusion (facets) incident on the node.
@
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Simplicial Complexes 101

The simplicial degree of a node in a simplicial complex is the number
if maximal simplices under inclusion (facets) incident on the node.
@

Simpl. deg. =2

Simpl. deg. = 1
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Simplicial Complexes

The simplicial degree of a node in a simplicial complex is the number

if maximal simplices under inclusion (facets) incident on the node.
(@)

O
A simplicial complex is completely described by the list of facets that

belong to it.

EPFL Lausanne



|m INDIANA UNIVERSITY
NETWORK SCIENCE INSTITUTE

Simplicial Complexes
Simplicial homology

What hinders application of homology to data?

Representation: it's difficult to find an optimal representative

Memory and efficiency: the algorithm for computing homology grows with the
number of simplices in the complex
Null model: There is a lack of samplers that could easily be used in practice.

/\
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Structure

e Random Simplicial Complexes
o Simplicial Configuration Model

e Reducing the complexity of homology
computation

e 1D-Homology and network
communities
o arXiv case study



Random Simplicial Complexes
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Simplicial Complexes
Sampling

Erdos-Renyi inspired:
Random pure simplicial complexes [Linial-Meshulam (2006)]
Random simplicial complexes [Kahle (2009)]
Multi-parameter random simplicial complexes [Costa-Farber (2015)]

Exponential random graphs inspired:
Exponential random simplicial complex [Zuev et al. (2015)]

Preferential attachment for simplicial complexes:
Network geometry with flavor [Bianconi-Rahmede (2016)]

Configuration model:
Configuration model for pure simplicial complexes [Courtney-Bianconi (2016)]
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Configuration model

-7
The configuration model is a generative model that creates a
random graph with a fixed degree sequence.

It implies the following are fixed?
the number of nodes n
the number of edges in the network m = % > ik
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Configuration model

=
The configuration model is a generative model that creates a
random graph with a fixed degree sequence.

Suppose to have n vertices with fixed degrees k; fori =1, ..., n, the
random graph is constructed in the following way.

1. Each vertex i is provided with k; edge 'stubs’, there are therefore
> ki =2 m stubs.

2. Uniformly at random two stubs are chosen and an edge is
created connecting the two of them, until no free stubs are left
in the graph.
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Bipartite graphs and simplicial complexes

Theorem

Let G be a bipartite graph with vertex sets {F, V}, Gy its one-mode
projections onto the vertex set V.
Then it exists a simplicial complex 2 whose underlying graph is Gy.

The neighbours A (f;) of f; are the vertices that form the maximal
simplex f;, for each i, or equivalently, the neighbours A (v;) of vertex
v; are the facets in which node v; appears.
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Bipartite graphs and simplicial complexes

Theorem

Let G be a bipartite graph with vertex sets {F, V}, Gy its one-mode

projections onto the vertex set V.
Then it exists a simplicial complex 2 whose underlying graph is Gy.
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Bipartite graphs and simplicial complexes

Theorem

For every 2., 3G, bipartite graph, s.t. one of its two one-mode
projections Gy is the underlying graph of Z.
Moreover, the facet size sequence of . is equal to the degree

R

sequence of F.
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Bipartite graphs and simplicial complexes

%
Idea:
Use the configuration model for bipartite

graphs and the maps to construct a

sampling method for SCM.
_%
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Bipartite graphs and simplicial complexes

Idea:

Use the configuration model for bipartite
graphs and the maps to construct a
sampling method for SCM.
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Adding constraints

First constraint: No multi-edges

Multi-edges decrease the size of the maximal simplices.

Bipartite graph Simplicial complex
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Adding constraints

Second constraint: No included neighborhoods

Included neighborhoods violate the maximality assumption of the

facets. Bipartite graph Simplicial complex
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Adding constraints

Constraints:
No multi-edges
No included neighborhoods

Then the acceptable configurations for the toy example are the following:

FEREERE
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Adding constraints

« Problem with rejection sampling: Far too many rejections!

Loose upper bound :
Prlreject] > exp[-0.5({d?)/{d>- 1) ({s?)/{s)- 1)]

All bipartite graphs with

sequences (d,s) Reject

No constraints violated

2(d, s)
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Markov Chain Monte Carlo sampling
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MCMC sampling: The details

Move set

1. Pick L~P random edges in bipartite graph
P can be arbitrary, we use Pr[L = ] = exp[All/Z

2. Rewire edges. If multi-edge or included neighbors, reject.

Similar to [Miklés—Erd6s—Soukup, Electron. J. Combin., 20, (2013)]

e MCMC is uniform over Q(d, s)
e Move set yields aperiodic chain
e Move set connects the space
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Results - Random instances

Disease regulation dataset (random instance) Crimes in St-Louis (random instance)
(facets : genes, nodes : human diseases) (facets : people, nodes : crimes)
[Goh et al., PNAS, 104, (2007)] [Rosenfeld et al., (1991)]
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Concept for a null model

Null model

Is the quantity flK) close to flK) for random simplicial complexes
K~SCMId(K), s(K)1 2
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Concept for a null model

Null model

Is the quantity f(X) close to f(K) for random simplicial complexes
X~SCMI[d(K), s(K)] ?
100 =
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K is atypical, K is organized beyond the local scale.
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Results on Betti numbers of real data

sets

Diseases

Pollinators

= 0
& 2) 1(_)1 ™, Degree-"
il e 10 EPan ’ ize =
EIR 1072 47 %,
e o ﬁ- I
Y )
L 10° 100 ¢ \m 10!
1 @ o B A ] : @ Bo B B
1073 o =~ 4 T —4& Y T T l.l.-- T
0 50 350 400 450 500 10 20 30 40 50

EPFL Lausanne



|m| INDIANA UNIVERSITY
NETWORK SCIENCE INSTITUTE

Results on Betti numbers of real data
sets

Pollinators (real) Pollinators (random)

3. Degree""
L A r ize =
- 3 .-.
3 b

10t

@ fo B P
T
40 50

EPFL Lausanne



Reducing the algorithmic complexity
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > ()([2maX(S)]3)

where m is the number of ALL simplices in the complex not only the maximal facets.
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > ()([2maX(S)]3)

where m is the number of ALL simplices in the complex not only the maximal facets.
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > O([2™2*(5)]3)

where m is the number of ALL simplices in the complex not only the maximal facets.
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > O([2™2%(5)]3)

where m is the number of ALL simplices in the complex not only the maximal facets.

This method does NOT guarantee
automatically that the new complex will
° have fewer simplices.

NOILJ3roydd
PROJECTION
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > O ([27™2*(d)]3)

where m is the number of ALL simplices in the complex not only the fffaximal facets.

This method does NOT guarantee
automatically that the new complex will
° have fewer simplices.

NOILJ3roydd
PROJECTION
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Simplicial Complexes
homological hiccups

The computational complexity of homology is O (m?) > O ([2™2*(d)]3)

where m is the number of ALL simplices in the complex not only the maximal facets.
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Simplicial Configuration Model, J-G Young et. al. 2017 PRE
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1D Homology and communities

Empirical proof of concept



|U] INDIANA UNIVERSITY
NETWORK SCIENCE INSTITUTE

The data set

Cornell University

The data span 9 years, from 2007 to 2016,

and are split according to the 18 major arX|V0rg

categories of arXiv.

This major categories correspond to
different thematic areas and thus can be
used as rough representative of different
scientific fields.

Notice: Due to arXiv's history, there is a bias
toward mathematical and physical topics.

.'a‘_ Set of authors

m List of categories

22| Date of publication
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The data S et Composition of arXiv dataset /@ Gty

arXiv.org

60000

50000 A

40000 -

The data span 9 years, from 2007 to 2016,
and are split according to the 18 major
categories of arXiv.

acc-phys
a-fin
g-bio
g-alg
nucl-th
funct-an
stat
comp-gas
anp-lg
a0-sci
alg-geom
dg-ga
patt-sol
guant-ph
hep-lat
adap-org
math
solv-int
nlin
hep-th

30000 A

# new submissions

20000 1

This major categories correspond to 10000 -
different thematic areas and thus can be
used as rough representative of different 1990 1995 000 2005 2010
scientific fields.

Notice: Due to arXiv's history, there is a bias
toward mathematical and physical topics.

~

papers in categories (%)

1995 2000
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The data set

Composition of arXiv dataset Doy Lriversity

arXiv.org
60000

50000

40000

The data span 9 years, from 2007 to 2016,
and are split according to the 18 major
categories of arXiv.

acc-phys
g-fin
g-bio
g-alg
nucl-th
funct-an
stat
comp-gas
amp-lg
ao-sci
alg-geom
dg-ga
patt-sol
guant-ph
hep-lat
adap-org
math
solv-int
nlin
hep-th

30000

# new submissiens

20000

This major categories correspond to 10000
different thematic areas and thus can be
used as rough representative of different
scientific fields. o

Notice: Due to arXiv's history, there is a bias
toward mathematical and physical topics.

0.8
0.6

04

papers in categories (%)

0.2

0.0
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Facets size and simplicial degree

Assess commonalities in the statistical properties of the different categories

Jensen-Shannon Divergence

JSD(P,Q) = 5 Dr(P | M) + 3Dk (Q | M)

P(z)
Dgr(P| Q)= —>_, P(z)log
z Q(z)
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Facets size and simplicial degree

Assess commonalities in the statistical properties of the different categories

Jensen-Shannon Divergence
JSD(P,Q) = 5 Dr(P | M) + 3Dk (Q | M)

Simplicial degree Facets size
d1 d2 s1 s2

s3

g-fin
stat
math-ph
q-bio
ar-qc
nlin
hep-th
hep-lat
math
nucl-th
quant-ph
nucl-ex
hep-ph
cs
physics
hep-ex
cond-mat
astro-ph

0.60

0.45
0.45

max(d)
max(s)

0.30

physics
015 gr-qc
nucl-ex
astro-ph
hep-ex

0.15

0.00 0.00

q-bio
gr-gqc
nlin
hep-th
hep-lat
math
nucl-th
quant-ph
nucl-ex
hep-ph
cs
physics
hep-ex
cond-mat
hep-ph
physics
gr-qc
nucl-ex
astro-ph
hep-ex

s
o -
":%.é
£
chgE
=

astro-ph

EPFL Lausanne



|m INDIANA UNIVERSITY
NETWORK SCIENCE INSTITUTE

Facets size and simplicial degree

Examples for the biggest connected component for each group.

/ afin stat \ nlin [ hep-th \
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Facets size and simplicial degree

Simplicial degree Facets size
— group 1 — group 1
group 2 roup 2
107 10+ N\ - group 3

104

S~
\ N M ﬂ ‘Hl

101 102
Facet size (s)

Quantitative finance
Quantitative biology
Statistics
Mathematical physics

Simplicial deg

EPFL Lausanne



|m INDIANA UNIVERSITY
NETWORK SCIENCE INSTITUTE

Facets size and simplicial degree

Simplicial degree Facets size
— group 1 — group 1
group 2 roup 2
10 10 N\ - group 3

High energy physics
Physics

Nuclear physics L
Astrophysics
General relativity

102
Simplicial degree (d)

101

Facet size (s)
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Facets size and simplicial degree
Homology equivalent simplicial complex

120000 A
100000 A
1 80000 -
60000 -
40000 A

20000 -

0 A
nucl-th hep-ph nucl-ex gr-gc hep-ex physics

Number of nodes in simplicial complex

Emm original
mm reduced

100

0.75 A

0.50 1

0.25 |

0.00 -

1eNumber of edges in simplicial complex

Maximum facet size in simplicial complex

| mmm original

mm reduced 2500 1

2000 |
1500 A
1000 A

500 1

nucl-th hep-ph nucl-ex gr-gc hep-ex physics

. original
m reduced

0.
nucl-th hep-ph nucl-ex gr-gc hep-ex physics

101 102
Simplicial degree (d)

10*

3
10 101

group 1
group 2
group 3

102 103

Facet size (s)
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Homology

We introduce a new quantity B./n the ratio of the number of cycles over the number of nodes in the

simplicial complex

|

10 20 30 40

cycle length (¢)

0.2<3/n<0.4

'|® ® hep-th

@ @ quant-ph

@ 9 Cc

@ © math am

© O hep-ex

1 Il

» physics |3
hep-lat
nucl-th

hep-ph
gr-qc

nucl-ex |3

10 20 30 40

cycle length (¢)

cycle length(/)
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Homology

Cycle length distribution

c1
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100 b
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math 0.24
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10
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Homology

Cycle length distribution

math-ph math-ph

,‘\\

Group 1
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Cycles length distribution

hep-lat hep-lat

Group 2
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Community detection

Assumption:
Homological cycles act as bridges between communities of the underlying graph

/\

SIMPLICIAL COMPLEX Homological cycles COMMUNITY detection
in underlying graph
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Community detection

&\}Qm%

iv Dynamical perspective

-E

i=f(z) = y=9(y)

SCHAUB, Michael T., et al. The many facets of community detection in complex networks. App. Net. Sc, 2017.
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Homology and Communities

If cycles do not act as bridges between communities, then 7
we expect them to go in and out randomly.

But we can clearly see that as cycles get

longer the go through a larger number of » »
communities. \ !

. ':x. :&..: V.
[t

4

€ = "u3| 32/A> - yd-yjew
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Homology bridges communities?

If cycles do not act as bridges between communities, then
we expect them to go in and out randomly. . _____

I I
But we can clearly see that as cycles get : UPPER BOUND :
longer the go through a larger number of I Yy=X I
communities. e = - c-—————- |

We decide to this as lower bound to assess if a
cycle act as bridge in a category, and the length
of the cycles as upper bound.

10 20 30 40

e LR L PR L LT 10t
: y=m*x !
! I
: Where M is the fraction : g :
| of total edges between 1 .-~ ~ | r*:0.89 mse:0.11

g r ~10¢+ 2 9 0
1 communities I ~10
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Future work

Extending to Persistent Homology

(e}

R VA °
SHRRAR S 4

[¢]

connected
components

cycles
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Future work

hep-th P.Hom. 0

math P.Hom. 0 nlin P.Hom. 0
. o o
2020 - e veeny, 1400 500 - 2020 .
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2015 1200 2015 A 2015 1 * -
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2010 1000 2010 - 2010
2005 A 800 2005 80 2005 A
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