Indiana University Network Science Institute

Topological summaries for the analysis of neuroimaging datasets

Alice Patania, Joshua Faskowitz, Giovanni Petri and Olaf Sporns

What is shape?

Shape for data translation

You might have performed shape analysis before, and did not know.

All these examples become too complicated to handle in **high-dimension**

Healthy

Severe AD

N

http://www.nlm.nih.gov/medlineplus/magazine/index.html

Jose' Perea: Presentation at CMSE

S

What is shape?

What to do in high-dimension?

We project and we cluster

Sklearn comparison of clustering techniques

S

What is shape?

Low dimensional skeleton representing the shape of a dataset

Saggar, Manish, et al. "Towards a new approach to reveal dynamical organization of the brain using topological data analysis." Nature communications 9.1 (2018): 1399.

Our idea

- Use neuroimages/brain networks as input vectors
- Describe the entire dataset with a single graph encoding similarity pattern in its shape
- Study the effect of a variable on the way the shape is arranged

It is an exploratory analysis that tries to go beyond similarity matrices

Our data was generated from 620 human subjects (63% female)

Both T1-weighted (T1w) and diffusion (dMRI) images were collected, with which we generated streamline **tractography** in the MNI space.

Josh

We constructed streamline count adjacency matrices by counting the **number of streamlines** that terminated in each region of interest (ROI) of the **Yeo network parcellation**.

Leveling the playing field

S

Building the shape graph

Nathan Kline Institute dataset

What is a shape graph hiding?

Shape graph and underlying clusters

Building the density matrix

- 0.060

To describe the distribution of age groups along the shape graph, we a density matrix.

We **count** the number of time subjects in the same/different age group are clustered in the same node and we **normalize** each matrix entry by the possible number of co-occurances.

7.0, 15.0) -	0.039	0.0072	0.0065	0.0073	0.006	0.0076	0.0053	0.0046	0.0041	0.0041	0.0029	0.0029	
6.0, 19.0) -	0.0072	0.048	0.0082	0.01	0.011	0.0066	0.0095	0.0043	0.0048	0.0014	0.0023	0.0019	
0.0, 22.0) -	0.0065	0.0082	0.034	0.0083	0.01	0.0054	0.0086	0.0056	0.0045	0.0044	0.0029	0.0025	
3.0, 26.0) -	0.0073	0.01	0.0083	0.042	0.01	0.0063	0.0095	0.0059	0.0071	0.005	0.0015	0.0026	
7.0, 37.0) -	0.006	0.011	0.01	0.01	0.037	0.0065	0.0096	0.0057	0.0047	0.0035	0.003	0.0017	
8.0, 46.0) -	0.0076	0.0066	0.0054	0.0063	0.0065	0.039	0.0047	0.0054	0.0038	0.0055	0.0036	0.0028	
7.0, 51.0) -	0.0053	0.0095	0.0086	0.0095	0.0096	0.0047	0.046	0.0063	0.0089	0.0073	0.0043	0.0048	
2.0, 57.0) -	0.0046	0.0043	0.0056	0.0059	0.0057	0.0054	0.0063	0.042	0.008	0.0073	0.0072	0.0061	
3.0, 61.0) -	0.0041	0.0048	0.0045	0.0071	0.0047	0.0038	0.0089	0.008	0.048	0.0077	0.0074	0.0081	
2.0, 66.0) -	0.0041	0.0014	0.0044	0.005	0.0035	0.0055	0.0073	0.0073	0.0077	0.042	0.0096	0.0082	
7.0, 71.0) -	0.0029	0.0023	0.0029	0.0015	0.003	0.0036	0.0043	0.0072	0.0074	0.0096	0.057	0.007	
2.0, 85.0) -	0.0029	0.0019	0.0025	0.0026	0.0017	0.0028	0.0048	0.0061	0.0081	0.0082	0.007	0.063	
	7.0, 15.0) -	6.0, 19.0) -	0.0, 22.0) -	3.0, 26.0) -	7.0, 37.0) -	8.0, 46.0) -	7.0, 51.0) -	2.0, 57.0) -	8.0, 61.0) -	2.0, 66.0) -	7.0, 71.0) -	2.0, 85.0) -	

M Is it worth going through the local clustering fase?

Nathan Kline Institute dataset

Is it worth going through the local clustering fase?

Effect of functional networks on the shape

Summary

Exploratory analysis to describe the entire dataset with a single graph encoding similarity pattern in its shape

Use this construction to study the effect of a variable on the way the shape is arranged

We found a strong effect of weight reshuffling for Saliency/Ventral Attention network and Visual Network related ROIs.

Indiana University Network Science Institute

Thank you for the attention

My collaborators:

Prof. Olaf Sporns

Josh(ua) Faskowitz

Giovanni Petri

