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A simplicial complex

A simplicial complex is a collection of simplices (hon-empty finite sets
ordered under inclusion).
It can be uniquely identified by its maximal simplices under inclusion (facets)
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A simplicial complex

A simplicial complex is a collection of simplices (hon-empty finite sets
ordered under inclusion).
It can be uniquely identified by its maximal simplices under inclusion (facets)

To every simplicial complex we can assign two
seguences:

Degree sequence
Number of maximal simplices under
inclusion incident on a node

Size sequence
Number of nodes contained in a maximal
simplex
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Simplicial degree and Facet size

A simplicial complex is a collection of simplices (hon-empty finite sets
ordered under inclusion).
It can be uniquely identified by its maximal simplices under inclusion (facets)

- d=2

d=(221,21)

To every simplicial complex we can assign two
seguences:

Degree sequence
Number of maximal simplices under
inclusion incident on a node

Size sequence
Number of nodes contained in a maximal
simplex
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Simplicial degree and Facet size

A simplicial complex is a collection of simplices (hon-empty finite sets
ordered under inclusion).

It can be uniquely identified by its maximal simplices under inclusion (facets)
To every simplicial complex we can assign two
sequences:

Degree sequence
Number of maximal simplices under
inclusion incident on a node

d=(22,1,2,1)
s=(3,3,2)

Size sequence
Number of nodes contained in a maximal
simplex
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Bipartite graphs and Simplicial complexes

Theorem

For every 2., 3G, bipartite graph, s.t. one of its two one-mode
projections Gy is the underlying graph of Z.
Moreover, the facet size sequence of 2. is equal to the degree

sequence of F.
Factor graph
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Bipartite graphs and Simplicial complexes

Theorem

Let G be a bipartite graph with vertex sets {F, V}, Gy its one-mode
projections onto the vertex set V.

Then it exists a simplicial complex Z whose underlying graph is Gy.

Factor graph

One-mode projection



I m I Indiana University
Network Science Institute

Bipartite graphs and Simplicial complexes

Idea
Use existing random models for bipartite graphs to construct a sampling
method for SCM.

Factor graph

7N
N

One-mode projection
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Existing approaches

*this list is not exhaustive

Erdos-Renyi inspired:
Random pure simplicial complexes [Linial-Meshulam (2006)]
Random simplicial complexes [Kahle (2009)]
Multi-parameter random simplicial complexes [Costa-Farber (2015)]

Exponential random graphs inspired:
Exponential random simplicial complex [Zuev et al. (2015)]

Preferential attachment for simplicial complexes:
Network geometry with flavor [Bianconi-Rahmede (2016)]

Configuration model:
Configuration model for pure simplicial complexes [Courtney-Bianconi (2016)]
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Configuration model

Idea

Use existing random models for bipartite graphs to construct a sampling
method for SCM.

The configuration model is a generative model for random graphs with fixed
number of nodes and degree sequence.
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Configuration model

Idea
Use existing random models for bipartite graphs to construct a sampling
method for SCM.

The configuration model is a generative model for random graphs with fixed
number of nodes and degree sequence.

This implies the following are fixed:
number of vertices (0O-simplices) and number of maximal simplices
vertices' degree sequence and maximal simplices’ size sequence
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Simplicial degree and Facet size

The simplicial configuration model (SCM) is the distribution
PriK; d s)=1/|0(d sl|

Where Qld, 8): number of simplicial complexes with sequences (d, S}

823‘

This approach generalizes a method by
[Courtney and Bianconi, Phys. Rev. E 93, (2016)]
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Bipartite graphs and Simplicial complexes

The simplicial configuration model (SCM) is the distribution
PriK; d s)=1/|0(d sl|

Where Qld, 8): number of simplicial complexes with sequences (d, S}
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Adding constraints

First constraint: No multi-edges
Multi-edges decrease the size of the maximal simplices.

Bipartite graph Simplicial complex
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Adding constraints

Second constraint: No included neighborhoods
Included neighborhoods violate the maximality assumption of the facets.

Bipartite graph Simplicial complex
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Adding constraints

Constraints:
No multi-edges
No included neighborhoods

Then the acceptable configurations for the toy example are the following:

FE
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Bipartite graphs and Simplicial complexes

The simplicial configuration model (SCM) is the distribution
PriK; d s)=1/|0(d sl|

Where Qld, 8): number of simplicial complexes with sequences (d, S}
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Adding constraints

« Problem with rejection sampling: Far too many rejections!
Loose upper bound :

Prireject] > expl-0.5(<a#)/{d)- N [{$2)/{s)-1

All bipartite graphs with

sequences (d,s) Reject

No constraints violated

(2(d, s)



Markov Chain Monte Carlo sampling
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Markov Chain Monte Carlo sampling
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Markov Chain Monte Carlo sampling
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MCMC sampling: The details

Move set

1. PickL~Prandom edges in bipartite graph
P can be arbitrary, we use Pril = 1= expINd1/1
2. Rewire edges. If multi-edge or included neighbors, reject.

Similar to [Miklos-Erd6s-Soukup, Electron. J. Combin., 20, (2013)]

e MCMC isuniformover Qld )
e Move setyields aperiodic chain
e Move set connects the space
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True systems

Results

Crimes in St-Louis (true system)
(facets : people, nodes : crimes)
[Rosenfeld et al., (1991)]

104, (2007)]

4

Disease regulation dataset
[Goh et al.,

(facets : genes, nodes : human diseases)
PNAS
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Results - Random instances

Disease regulation dataset (random instance) Crimes in St-Louis (random instance)
(facets : genes, nodes : human diseases) (facets : people, nodes : crimes)
[Goh et al., PNAS, 104, (2007)] [Rosenfeld et al., (1991)]
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How to assess the significance
of the properties of a simplicial complex?

Building a null model
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Concept for a null model

Null model
Is the quantity flK) close to flK) for random simplicial complexes

K-SCMId(K), s(K)1 2
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Kis typical, the local quantities (@,8) explainf.
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Concept for a null model

Null model
Is the quantity flK) close to flK) for random simplicial complexes

K-SCMId(K), s(K)1 2
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K is atypical, K is organized beyond the local scale.
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Results on Betti numbers of real data sets

Pollinators
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Results on Betti numbers of real data sets

Pollinators (real) Pollinators (random)
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Our contribution Code : github.com/jg-you/scm
(1) J.-G. Young, G. Petri, F. Vaccarino and A. Patania, Phys. Rev. E 96 (3), 032312 (2017)

Equilibrium random ensembles
(2) 0. Courtney and G. Bianconi, Phys. Rev. E 93, (2016)
(3) K. Zuey, O. Eisenberg and K. Krioukov, J. Phys. A 48, (2015)

Sampling
(4) B. K. Fosdick, et al., arXiv :1608.00607 (2016)



https://github.com/jg-you/scm
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(1) J.-G. Young, G. Petri, F. Vaccarino and A. Patania, Phys. Rev. E 96 (3), 032312 (2017)
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https://github.com/jg-you/scm

