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Simplicial degree and Facet size

To every simplicial complex we can assign two 
sequences:

Degree sequence
Number of maximal simplices under 
inclusion incident on a node

Size sequence
Number of nodes contained in a maximal 
simplex

d = (2,2,1,2,1)
s = (3,3,2)

A simplicial complex is a collection of simplices (non-empty finite sets 
ordered under inclusion).
It can be uniquely identified by its maximal simplices under inclusion (facets)



Bipartite graphs and Simplicial complexes

Factor graph
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Bipartite graphs and Simplicial complexes

One-mode projection

Factor graph

Idea
Use existing random models for bipartite graphs to construct a sampling 
method for SCM.



*this list is not exhaustive

Erdos-Renyi inspired:
Random pure simplicial complexes [Linial-Meshulam (2006)]
Random simplicial complexes [Kahle (2009)]
Multi-parameter random simplicial complexes [Costa-Farber (2015)]

Exponential random graphs inspired:
Exponential random simplicial complex [Zuev et al. (2015)]

Preferential attachment for simplicial complexes:
Network geometry with flavor [Bianconi-Rahmede (2016)]

Configuration model:
Configuration model for pure simplicial complexes [Courtney-Bianconi (2016)]

Existing approaches



Configuration model

The configuration model is a generative model for random graphs with fixed 
number of nodes and degree sequence.

Idea
Use existing random models for bipartite graphs to construct a sampling 
method for SCM.



Configuration model

The configuration model is a generative model for random graphs with fixed 
number of nodes and degree sequence.

This implies the following are fixed:
number of vertices (0-simplices) and number of maximal simplices
vertices’ degree sequence and maximal simplices’ size sequence

Idea
Use existing random models for bipartite graphs to construct a sampling 
method for SCM.



Simplicial degree and Facet size

This approach generalizes a method by
[Courtney and Bianconi, Phys. Rev. E 93, (2016)]

Pr(K; d, s) = 1/|Ω(d, s)|
The simplicial configuration model (SCM) is the distribution

Where Ω(d, s): number of simplicial complexes with sequences (d, s)
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The simplicial configuration model (SCM) is the distribution

Where Ω(d, s): number of simplicial complexes with sequences (d, s)



Adding constraints

NOT VALID

First constraint: No multi-edges 
Multi-edges decrease the size of the maximal simplices.



Adding constraints

Second constraint: No included neighborhoods
Included neighborhoods violate the maximality assumption of the facets.

NOT VALID



Adding constraints

Constraints: 
No multi-edges 
No included neighborhoods

Then the acceptable configurations for the toy example are the following:



Pr(K; d, s) = 1/|Ω(d, s)|
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The simplicial configuration model (SCM) is the distribution

Where Ω(d, s): number of simplicial complexes with sequences (d, s)

ACCEPTED



Adding constraints

! Problem with rejection sampling: Far too many rejections! 

Loose upper bound :

Pr[reject] > exp[-0.5(〈d2〉/〈d〉− 1) (〈s2〉/〈s〉− 1)]



Markov Chain Monte Carlo sampling
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MCMC sampling: The details

Move set

1. Pick L∼P random edges in bipartite graph
P can be arbitrary, we use Pr[L = l] = exp[λl]/Z

2. Rewire edges. If multi-edge or included neighbors, reject.

Similar to [Miklós–Erdős–Soukup, Electron. J. Combin., 20, (2013)]

● MCMC is uniform over Ω(d, s)
● Move set yields aperiodic chain
● Move set connects the space



Results - True systems



Results - Random instances



Building a null model

How to assess the significance
of the properties of a simplicial complex?



Concept for a null model

Null model
Is the quantity f(X) close to f(K) for random simplicial complexes 
X∼SCM[d(K), s(K)] ?

Pr[| f(K) − f(X)| < ] ≈ 1

K is typical, the local quantities (d,s) explain f.



Concept for a null model

Pr[| f(K) − f(X)| < ] ≪ 1

Null model
Is the quantity f(X) close to f(K) for random simplicial complexes 
X∼SCM[d(K), s(K)] ?

K is atypical, K is organized beyond the local scale.



Results on Betti numbers of real data sets



Results on Betti numbers of real data sets
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Code : github.com/jg-you/scm

https://github.com/jg-you/scm
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