Application of topological data analysis
to the detection of mild cognitive
impairment
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Alzheimer’s Disease |m|

Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior.
Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily
tasks.

Two abnormal structures called plaques and tangles are prime suspects in damaging and killing nerve cells.
Plaques are deposits of beta-amyloid that build up in the spaces between nerve cells
Tangles are twisted fibers of another protein called tau that build up inside cells

In the mildly symptomatic stages, pathological brain atrophy e
can be subtle and overpowered due to signal by aging.

Our aim: Predict cognitive status using topological features of
brain atrophy that are indicative of mild cognitive impairment.




ImaGene study |m|

155 participants:
105 mild cognitive impairment (MCI)
Amnestic MCI (aMCl)
Non-amnestic MCI (naMCl)
50 cognitively normal (CN) individuals (at Base Line)

All participants’ condition was assessed annually over 5 years.

Clinical measures, cognitive measures, structural imaging, Amyloid PET, genetic & epigenetic data,
plasma and serum.

N=52

Age, yr 69.03 (7.9) 69.28 (8.5) 69.78 (8.5) 0.9

Education, yr | 17.6 (2.04) 15.5 (2.7) 16.5 (2.88) 0.001
Gender, M/F 30/21 26/43 20/18
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Cortical thickness |m|
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https://docs.google.com/file/d/1NmSPu01NkXAwf9kstX9MS6OPHc0jzBC8/preview

Brain meshes

Cortical thickness brain meshes were derived using FreeSurfer 6.0.0. (vertex-wise regressions across all
subjects). Age was additionally regressed out of the thickness data.

Constructed meshes:

327684 Vertices
655360 Triangles




Brain meshes

U

Objective: Use cortical thickness to build a coarse descriptor of the surface that still retains
meaningful information about the data set.
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Brain meshes

U

Objective: Use cortical thickness to build a coarse descriptor of the surface that still retains

meaningful information about the data set.
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Brain meshes |m|

Objective: Use cortical thickness to build a coarse descriptor of the surface that still retains
meaningful information about the data set.
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The persistent scale-space kernel

Sex and age
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Persistent scale-space kernel intuition: L08

To build the map to an Hilbert space, each persistence diagram D
can be uniquely represented as a sum of Dirac delta distributions,
one for each pointin D.
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Build suitable kernels (quantify dissimilarity) from
homological features

A Stable Multi-Scale Kernel for Topological Machine Learning. Reininghaus, Huber, Bauer & Kwitt 2015
Integrating Tara Oceans data sets using a multiple kernel approach. Mariette, et. al. (2016)



The persistent scale-space kernel

Sex and age

Following (Reininghaus et al. 2015) we build a persistent kernel from the
persistence diagrams of dimension O and 1.

These kernels were combined using a sparse-consensus-integration
approach introduced by (Mariette et al. 2016). The resulting kernel is a
linear combination of the persistent scale-space kernels with coefficients:
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Build suitable kernels (quantify dissimilarity) from
homological features

A Stable Multi-Scale Kernel for Topological Machine Learning. Reininghaus, Huber, Bauer & Kwitt 2015
Integrating Tara Oceans data sets using a multiple kernel approach. Mariette, et. al. (2016)
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Supervised learning for subject classification |m|

To validate the use of homological features, three demographic kernels were created for age, gender and
education using Gaussian-radial-basis functions.

We trained four support vector machine classifiers, two for uncorrected data (homological-vs-mesh) and
two for age-regressed data (homological-vs-mesh). Validation was done using a leave-one-out approach.
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Supervised learning for subject classification

Classification Performance
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Top-Bottom: integrated kernel with free surfer meshes vs integrated kernel with peristant homology(PH) features

B Mesh features
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Left-Right: original vs age regressed data.

Similarity = True Positive Ratio

Specificity = False Positive Ratio
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Work in progress

327684 vertices thickness
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*Sample image not actual data

327684 vertices thickness
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Work in progress - Adding genetic features
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3000 genes expressionfrom plasma of peripheral blood
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Number of connected components

Connected components
Study of 3000 genes
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Connected components

Study of 3000 genes

1-2307

Manhattan distance between Betti curves (Ho)
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Connected components
Study of 3000 genes

1-2307
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 26

Cluster label

The silhouette plot for the various clusters. The visualization of the clustered data.
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