Introduction to TOPOLOGICAL DATA ANALYSIS Alice Patania PhD

ASSISTANT RESEARCH PROFESSOR.

DEPT. of MATHEMATICS and STATISTICS

VERMONT COMPLEX SYSTEMS CENTER

February 11th 2022

The theory

data complexes

filtrations

structure persistence modules

homology and barcodes

function

sheaves

sheaf cohomology

The application

brain data Alzheimer disease brain dynamics

What is data?

Let X be a topological space

X is unknown, we want to study it, but we can only collect discrete random samples

What is data?

Let X be a topological space

X is unknown, we want to study it, but we can only collect discrete random samples

data set D = X

What can we learn about X from D? and how can do we do it without bias?

What do I mean about Blas?

When the theoretical model is unknown, coordinates are not necessarily meaningful

Similarly, metrics in data sets are not always justified

choosing a parameter gives a partial view

Topology is the cure to all evil

When the theoretical model is unknown, coordinates are not necessarily meaningful coordinate-free method

Similarly, metrics in data sets are not always justified ignore the quantitative values of distance function and get information only the nearness of points

choosing a parameter gives a partial view

Construct summaries of information over whole domains of parameters

On the local behaviour of spaces of natural images

G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian (2008)

Data: 3×3 patches from images
They can be seen as points in 9-dimensional space

normalized to have average = "aray"?

normalized to have average = "gray") => the points lay on a 7-sphere norm = 1

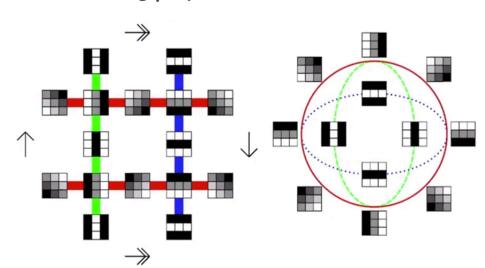
On the local behaviour of spaces of natural images

G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian (2008)

Data: 3×3 patches from images
They can be seen as points in 9-dimensional space

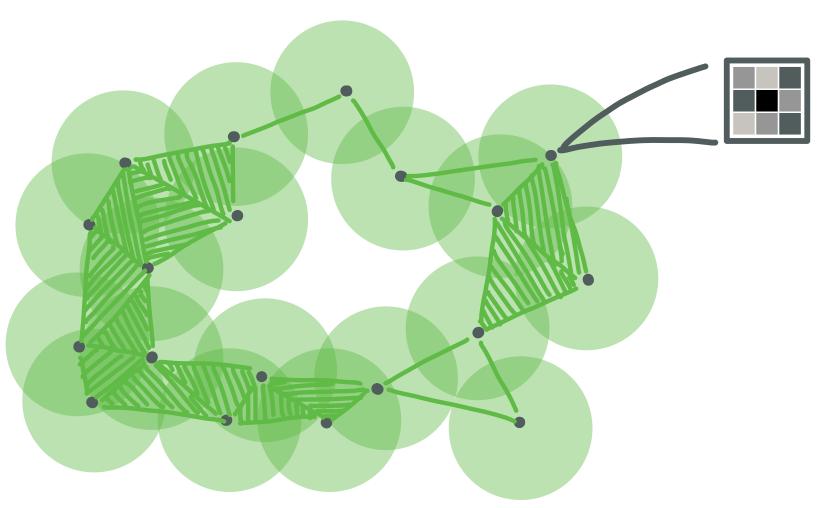
normalized to have average = "gray") => the points lay on a 7-sphere norm = 1

using topological data analysis they were able to find out that the subspace the data comes from has the same homology type as the KLEIN BOTTLE



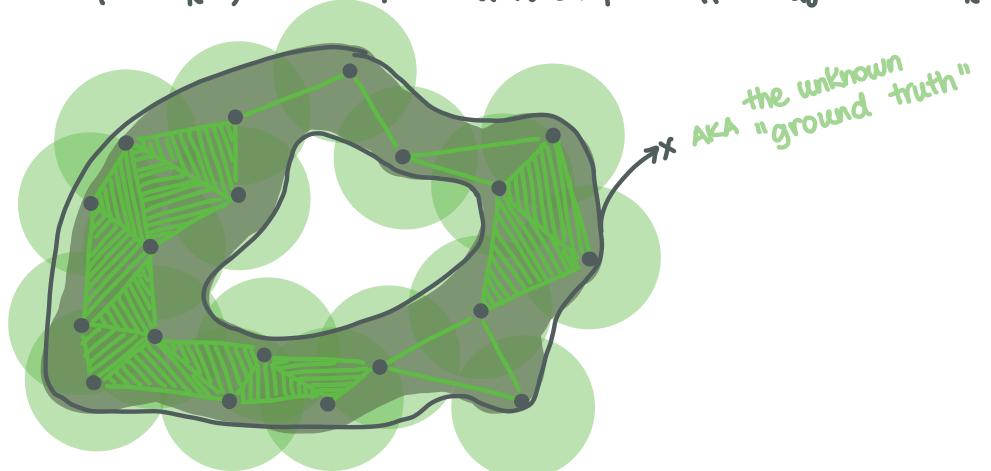
How to go from data to a structure?

In this case the data set comes with an intrinsic metric then we can construct a simplicial complex from it.



Nerve

Let X be a topological space and $U=\{U_\alpha\}_{\alpha\in A}$ a covering of X. The nerve of U is an abstract simplicial complex with vertex set A. $\sigma=\{a_0,\dots a_K\}$, $a_i\in A$ spans a K-simplex iff $U_{\alpha_0}\cap\dots\cap U_{\alpha_K}\neq\emptyset$



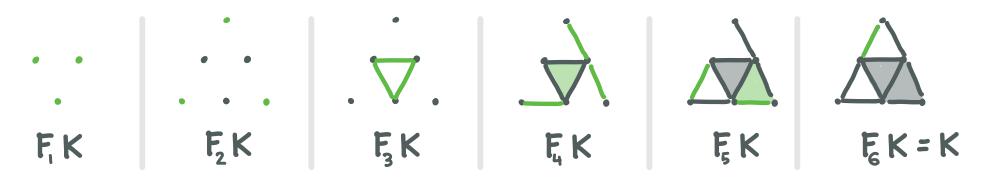
Nerve

Let X be a topological space and $U = \{U_{\alpha}\}_{\alpha \in A}$ a covering of X. The nerve of U is an abstract simplicial complex with vertex set A. $\sigma = \{a_{\alpha} : : a_{\kappa}\}$, $a_{i} \in A$ spans a K-simplex iff $U_{\alpha_{\alpha}} \cap :: \cap U_{\alpha_{\kappa}} \neq \emptyset$

Theorem

Let X be a topological space, $U \cdot \{U_\alpha\}_{\alpha \in A}$ a countable open covering of X s.t. $\forall S \subseteq A$ with $S \neq \alpha \cap U_S$ is either contractible or empty. Then N(U) is homotopy equivalent to X.

Let K be a simplicial complex. A filtration F is a nested sequence of strictly increasing subcomplexes of K $F_1K + F_2K + \cdots + F_nK = K$



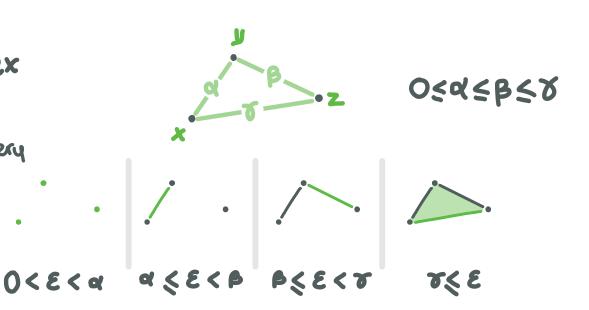
Vietoris-Rips filtration

VR (X,E) is a simplicial complex

of= {a, ... a, i }, a; e A

of e K iff the distance between every

pair of points in of is at most E



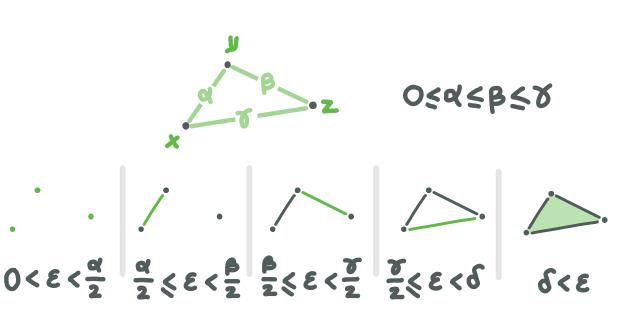
Čech filtration

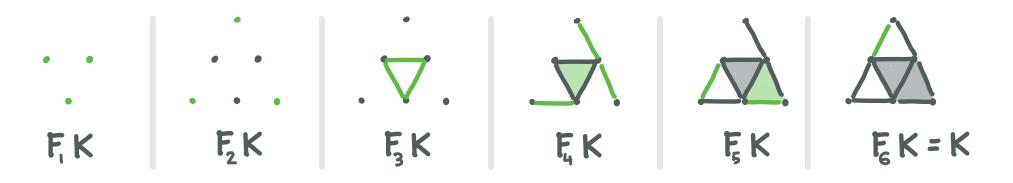
Č(X,E) is a simplicial complex

o'= {a. ... akt, aie A

JEK IFF B(5) ... , B(5) + \$

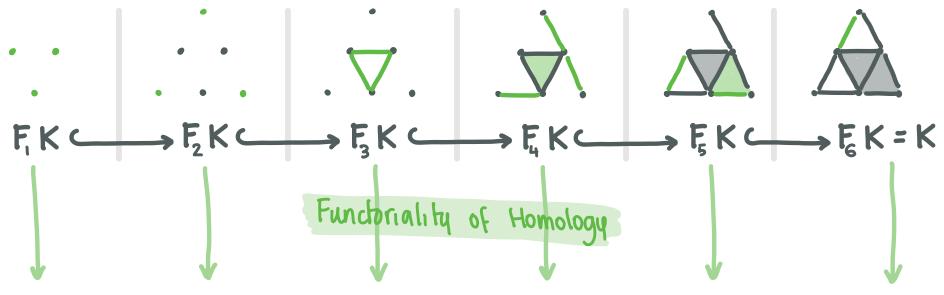
 $B_{x}(s) = ball centered in x of radius s$





Functoriality of Homology

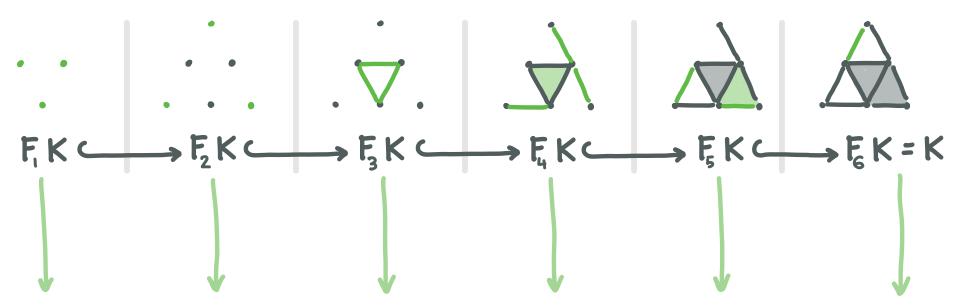
- If $f: K \to L$ and $g: L \to M$ simplicial maps then $C.(g \cdot f) = C.(g) \cdot C(f)$
- If $\varphi:(C,d) \rightarrow (C',d')$ and $\psi:(C',d') \rightarrow (C',d'')$ chain maps then $H.(\Psi\cdot \varphi) = H.(\Psi) \cdot H.(\varphi)$



 $H_{\cdot}(F,K) \rightarrow H_{\cdot}(F,K) \rightarrow H_{$



PERSISTENT HOMOLOGY



 $H_{\cdot}(F_{\cdot}K) \rightarrow H_{\cdot}(F_{\cdot}K) \rightarrow H_{\cdot}(F_{\cdot}K$

PERSISTENT HOMOLOGY

persistence homology module

A (discrete) persistence module is a pair (V_a,a_a) of vector spaces $\{V_i: i \in IN\}$ and linear maps $a_i: V_i \rightarrow V_{i+1}$ $V_b \longrightarrow V_i \longrightarrow \cdots \longrightarrow V_i \longrightarrow V_{i+1} \longrightarrow \cdots$

Warning! This is not necessarry a complex (i.e. $a_i \cdot a_{i+1}$ is not always =0)

A (discrete) persistence module is a pair (V_a,a_a) of vector spaces $\{V_i: i \in IN\}$ and linear maps $a_i: V_i \rightarrow V_{i+1}$ $V_b \rightarrow V_1 \rightarrow \cdots \rightarrow V_i \rightarrow V_{i+1} \rightarrow \cdots$

Persistence modules form a category!

If ti q: is invertible, then q is an isomorphism

The direct sum of persistence modules $(V,a) \oplus (W,b) = (V,\Theta W,a,\Theta b.)$ $V_0 \oplus V_0 \xrightarrow{q_0 \oplus b_0} V_1 \oplus W_1 \xrightarrow{q_0 \oplus b_1} \cdots \longrightarrow V_i \oplus W_i \xrightarrow{q_i \oplus b_i} \cdots$

A persistence module is indecomposable if it admits no interesting direct sum decomposition

If
$$(I,c) \simeq (V,a) \oplus (W,b)$$
 then $\{(V,a) \simeq (I,c)\}$

$$\{(W,b) \simeq (0,0)\}$$

Property

Persistence modules of the following type are indecomposable for $i \le j$ with $i,j \in \mathbb{N}$

A persistence module is indecomposable if it admits no interesting direct sum decomposition

If
$$(I,c) \simeq (V,a) \oplus (W,b)$$
 then $\{(V,a) \simeq (I,c)\}$

Property

Persistence modules of the following type are indecomposable for $i \le j$ with $i,j \in \mathbb{N}$

(I, cij) Interval [i.j] module

Decomposition Theorem

A; 15 150morphism \(\forall j >> 0\)

Let (V., a.) be a finite type persistence module then exists a finite set of intervals Bar (V., a.) = {[i,j] ieN,jeNu{=0} j>if and a multiplicity u: Bar (V., a.) - N so that:

$$(V. a.) \simeq \bigoplus_{[i,j] \in Bor(V,a)} (I_{i}^{ij} c^{ij})^{\mu[i,j]}$$

Barcode decomposition

(idea)

PROOF uses the classification of freely generated F[t]-modules into a free and torsion part. Because there is a lemma saying that we can always represent a persistence tame module as a graded module over IF[t]

(or tame) Decomposition Theorem

Yi' dum Vi < 00 and a; :V; ->V;+1

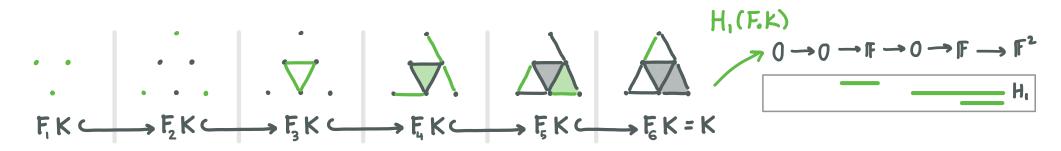
a; 15 omorphism Yj >> 0

Let (V., a.) be a finite type persistence module then exists a finite set Bar (V., a.) = {[ij] ieN, jeNu{=>} j>if and a multiplicity of intervals µ: Bar (V., a.) — N so that:

$$(V. a.) \simeq \bigoplus_{[i,j] \in Box(V,a)} (I_{i,j})^{\mu[i,j]}$$

Boxcode decomposition

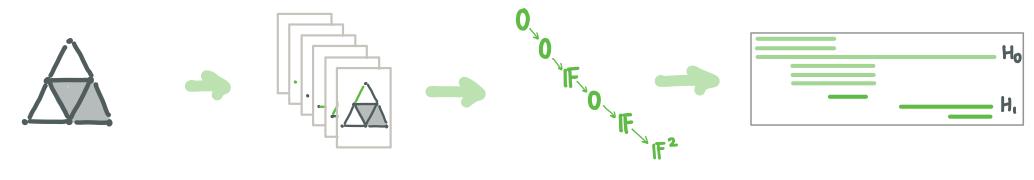
The Barcode decomposition is unique up to reordering of factors



Persistent Homology

$$\begin{bmatrix} Simplicial \\ complexes \\ K \end{bmatrix} \longrightarrow \begin{bmatrix} Filtrations \\ F.K \end{bmatrix} \longrightarrow \begin{bmatrix} Persistence \\ Modules \\ H_{K}(F.K) \end{bmatrix} \longrightarrow \begin{bmatrix} Barcodes \\ \oplus [i,j] \end{bmatrix}$$

example



 $F : K \longrightarrow F : K \longrightarrow H : (F : K) \longrightarrow$

The theory

data complexes

filtrations

structure persistence modules

homology and barcodes

function

sheaves

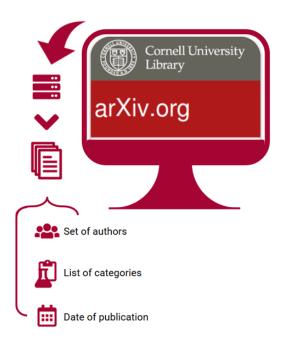
sheaf cohomology

The application

brain data Alzheimer disease brain dynamics

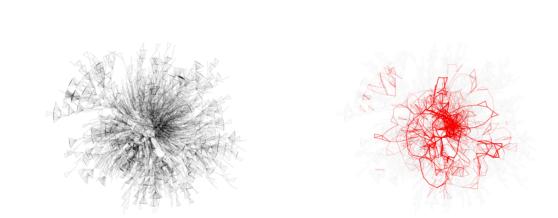
Applications

collaboration networks

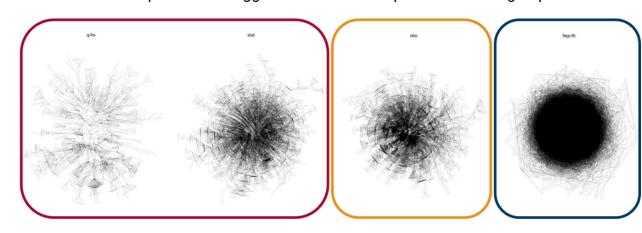


The shape of collaboration

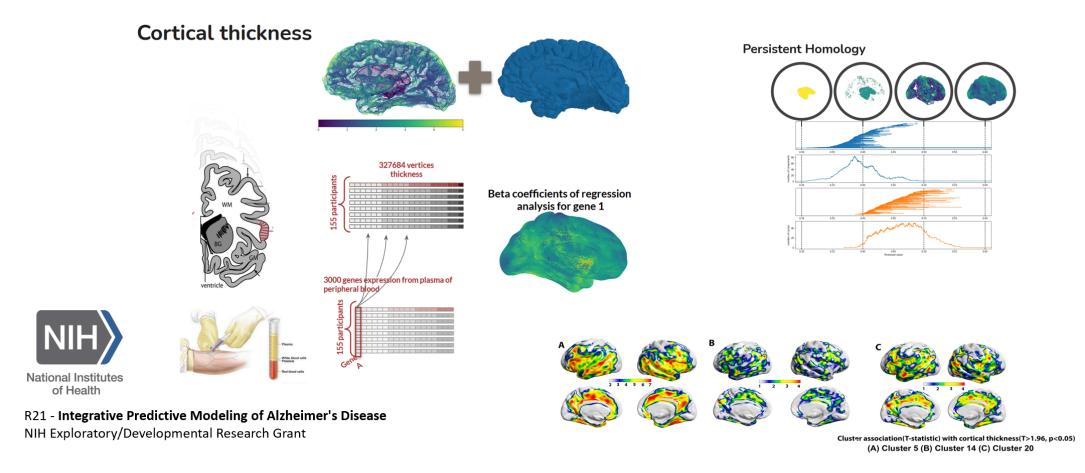
A Patania, F Vaccarino, G Petri - EPJ Data Science (2017)



Examples for the biggest connected component for each group.



Applications



Characterization of genetic expression patterns in Mild Cognitive Impairment using a multiomics approach and neuroimaging endophenotypes A <u>Bharthur Sanjay</u>, **A Patania**, X Yan, D <u>Svaldi</u>, T Duran, N Shah, E Chen, LG <u>Apostolova</u> (2021)

Applications

Neurotycho - The experiment 126 ECoG channels 10 seconds George Anesthetized ■ Chibi anesthetic drug Propofol Awake Ketamine 1.07 1.07 1.07 0.8-0.8-0.8bersistence 0.4 0.2 0.6-0.6-0.4-0.4 0.2-0.2-0.0 0.5 birth radius 1.0 0.5 birth radius 0.0 0.5 1.0 0.0 0.0 1.0 birth radius

Topological Analysis of Differential Effects of Ketamine and Propofol Anesthesia on Brain Dynamics T F. Varley, V Denny, O Sporns, A Patania (2021) in submission Open Science (bioarxiv- https://doi.org/10.1101/2020.04.04.025437)

A simplicial map $f: K \longrightarrow L$ where $f(\sigma)$ is a simplex of L such that $\dim f(\sigma) \leq \dim (\sigma)$ and if $\dim \sigma = 0$, $\dim f(\sigma) = 0$

Let $f: K \rightarrow L$ simplicial map, the fiber of $\tau \in L$ is the set $\tau_f = \{a \in K \mid f(a) \subseteq \tau\}$ these are the simplices of K that end up being faces of the simplex τ

Proposition

- i) The 1s a subcomplex of K
- 11) T/E = T/E inclusion of simplicial complexes

Homology is a functor then $\forall \tau \in L$ $\tau \mapsto H_{k}(\tau_{k})$ $\tau \in \tau' \mapsto H_{k}(\tau_{k})$

This is a well known construction in topology: a sheaf!

Sheaves

$$\begin{bmatrix} Simplicial \\ complexes \\ K \end{bmatrix} \longrightarrow \begin{bmatrix} Filtrations \\ F.K \end{bmatrix} \longrightarrow \begin{bmatrix} Persistence \\ Modules \\ H_{K}(F.K) \end{bmatrix} \longrightarrow \begin{bmatrix} Barcodes \\ \Theta[i,j] \end{bmatrix}$$

$$\begin{bmatrix}
Simplicial \\
complexes \\
K
\end{bmatrix}
\xrightarrow{\text{Maps}}
\begin{bmatrix}
\varphi: K \to L
\end{bmatrix}
\xrightarrow{\text{Sheaf}}
\begin{bmatrix}
Sheaf \\
g(K)
\end{bmatrix}
\xrightarrow{\text{Cohomology}}$$

$$H^{k}(S(K))$$

A sheaf on a simplicial complex is a functor $8:(L,E) \longrightarrow Vect_F$

category of vector spaces over a field

3 assigns to each simplex TEL a vector space S(T) called the stalk of I over T Inclusion τ'ετ a linear map S(τ'ετ): S(τ')→S(τ) restriction map

such that the following hold:

identity $\tau=\tau$ is sent to identity map associativity $\forall \tau \in \tau' \in \tau'' \ S(\tau) \longrightarrow S(\tau')$ diagram

A sheaf on a simplicial complex is a functor $S:(L,E) \rightarrow Vect_F$

$$3: (L, \subseteq) \longrightarrow Vect_{\mathbb{F}}$$

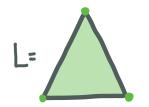
category of vector spaces over a field

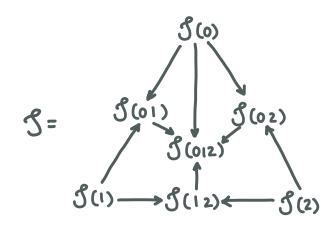
3 assigns to each simplex TEL a vector space S(T) called the stalk of I over T Inclusion t's t a linear map S(t'st): S(t) - S(t) restriction map

such that the following hold:

identity $\tau = \tau$ is sent to identity map associativity $\forall \tau \in \tau'' \ S(\tau) \longrightarrow S(\tau')$ diagram

small example





A sheaf on a simplicial complex is a functor $S:(L,\subseteq) \longrightarrow Vect_{\mathbb{F}}$

Category of vector spaces over a field

3 assigns to each simplex TEL a vector space S(T) called the stalk of I over T Inclusion t's t a linear map S(t'st): S(t) - S(t) restriction map

such that the following hold:

Identity $\tau = \tau$ is sent to identity map associativity $\forall \tau \in \tau' \in \tau'' \quad S(\tau) \longrightarrow S(\tau')$

small example



A sheaf on a simplicial complex is a functor $S:(L, \subseteq) \longrightarrow Vect_F$

$$3: (L, \subseteq) \longrightarrow Vect_{\mathbb{F}}$$

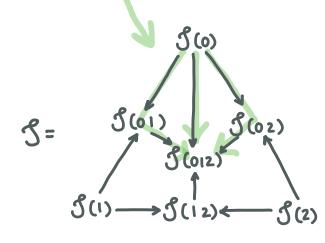
Category of vector spaces over a field

3 assigns to each simplex TEL a vector space S(T) called the stalk of I over T Inclusion t's t a linear map S(t'st): S(t) - S(t) restriction map

such that the following hold:

identity $\tau = \tau$ is sent to identity map associativity $\forall \tau \in \tau' \in \tau''$ $\mathcal{S}(\tau) \longrightarrow \mathcal{S}(\tau')$

small example

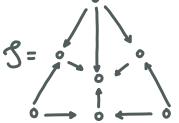


Meaningful sheaves

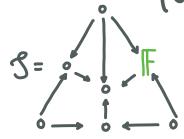
zero sheaf assigns the ovector space to every tel and all inclusions to Omap

Simplicial complex

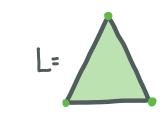
skyscraper sheaf fix a simplex $\tau \in L$, assigns $\{F \text{ to } \tau \in L \}$, all inclusions to 0 map

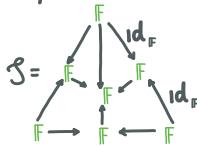


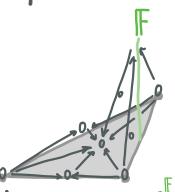
Simplicial complex



constant sheaf F. assigns F to every simplex tel and id, to every inclusion t'Et







Sheaf Cohomology

To define a cohomology, we need to define a cochain complex. For that we need cochain groups and coboundary maps

cochain group of L with coefficients in the sheaf S is the vector space $C^{K}(L;S) = TT S(\tau)$

coboundary map of: CK(L;S) ---> CK+1 (L;S) is the linear combination \(\Sigma_{\text{cis}} \) dim \(\text{cis} \) dim \(\text{cis} \)

Proposition

The sequence $0 \longrightarrow C^{\circ}(L,S) \xrightarrow{\partial_{s}^{\circ}} C'(L,S) \xrightarrow{\partial_{s}^{\circ}} \cdots$ is a co-chain complex

We can define the sheaf cohomology of L with coefficients in S as $H^{k}(L;S) = \lim_{l \to \infty} J^{k-1}$

Sheaf Cohomology

To define a cohomology, we need to define a cochain complex. For that we need cochain groups and coboundary maps

cochain group of L with coefficients in the sheaf S is the vector space $C^{K}(L;S) = TT S(\tau)$

coboundary map of: CK(L;S) ---> CK+1 (L;S) is the linear combination \(\Sigma_{-1}^{\circ} \) olim \(\circ} \) olim \(\circ} \)

Proposition

The sequence $0 \longrightarrow C^{\circ}(L,S) \xrightarrow{\partial_{s}^{\circ}} C'(L,S) \xrightarrow{\partial_{s}^{\circ}} \cdots$ is a co-chain complex

We can define the sheaf cohomology of L with coefficients in S as $H^{k}(L;S) = \lim_{N \to \infty} \partial^{k-1}$

NOTE

When S=1FL is the constant sheaf, the sheaf cohomology is the classical simplicial cohomology

Sheaves in the wild

In practice, sheaves can be considered as way to encode very complex data structures without having to build overly complex, overfitted models.

Sheaves are good, for example, to represent time-series, images, and videos.

V-sampling sheaf ...

(for discrete sampling)

supported on a subset A of L is a sheaf whose stalks are V in each cell in A and O everywhere else

HO sheaf cohomology can be interpreted as the number of connected solutions/global sections of the system defined by the unear transformations + the simplicial structure

some interesting applications

opinion dynamics / spectral theory topological filters for signal processing

Robert Ghrist, Jakob Hansen Georg Essl, Michael Robinson

Sheaves in the wild

In practice, sheaves can be considered as way to encode very complex data structures without having to build overly complex, overfitted models.

```
Sheaves are good, for example, to represent time-series, images, and videos.

V-sampling sheaf ... 

(for discrete sampling)

supported on a subset A of L is a sheaf whose stalks are V in each cell in A and O everywhere else
```

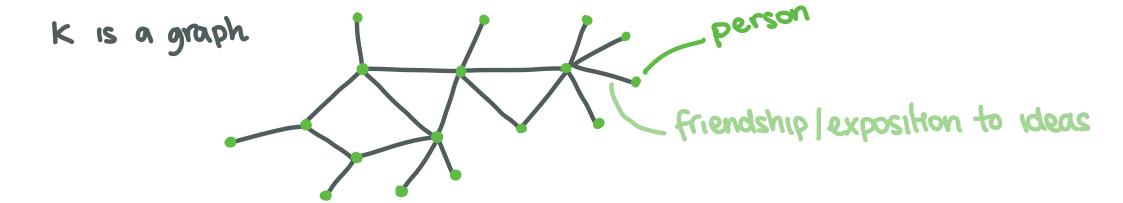
 H^0 sheaf cohomology can be interpreted as the number of connected solutions /global sections of the system defined by the unear transformations + the simplicial structure

some interesting applications

opinion dynamics/spectral theory	Robert Ghrist, Jakob Hansen
topological filters for signal processing	Georg Essl, Michael Robinson

Opinion Dynamics on sheaves

Jakob Hansen, Robert Ghrist



O-chains

1 - chains

coboundary

laplacian

global sections

private opinion distribution

parmise discussion

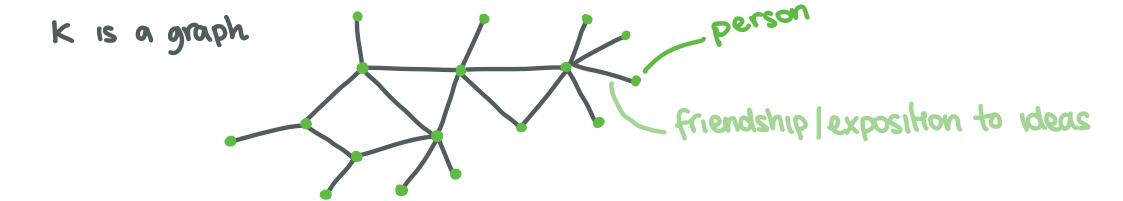
aggregate of public disagreement

"average" of private disagreement

harmonic obinions

Opinion Dynamics on sheaves

Jakob Hansen, Robert Ghrist



O-chains

1 - chains

coboundary

laplacian

global sections

private opinion distribution

parmise discussion

aggregate of public disagreement

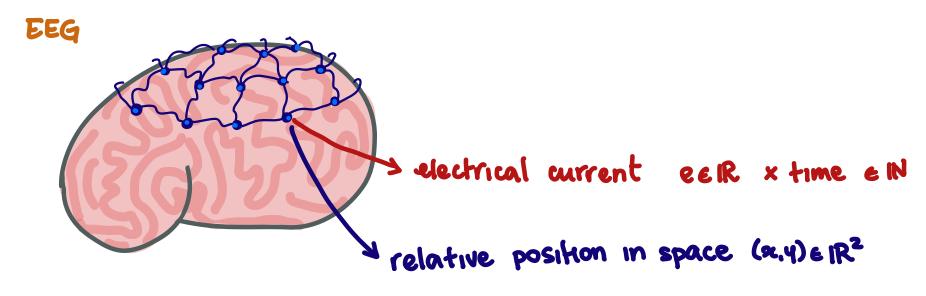
"average" of private disagreement

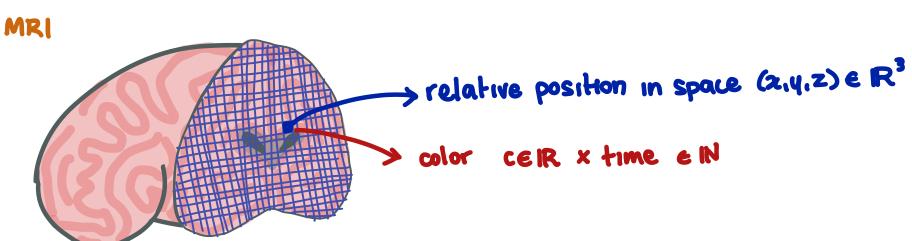
harmonic opinions

public agreement

My research

TOPOLOGY + BRAIN FUNCTION





Topological Data Analysis: getting started

ARTICLES

Persistent Homology-Theory & Practice H. Edelsbrunner and D. Morozov Barcodes: the persistent topology of data R. Ghrist Topology and data G. Carlsson High-dimensional Topological Data Analysis F. Chazal Persistence theory: from quiver representations to data analysis S. Oudot

BOOKS

Elementary Applied Topology R. Ghrist
Computational Topology: an introduction H. Edelsbrunner and J.L. Harer
Topology for computing A.J. Zomorodian
Topological Signal Processing M. Robinson

Topological Data Analysis: the community

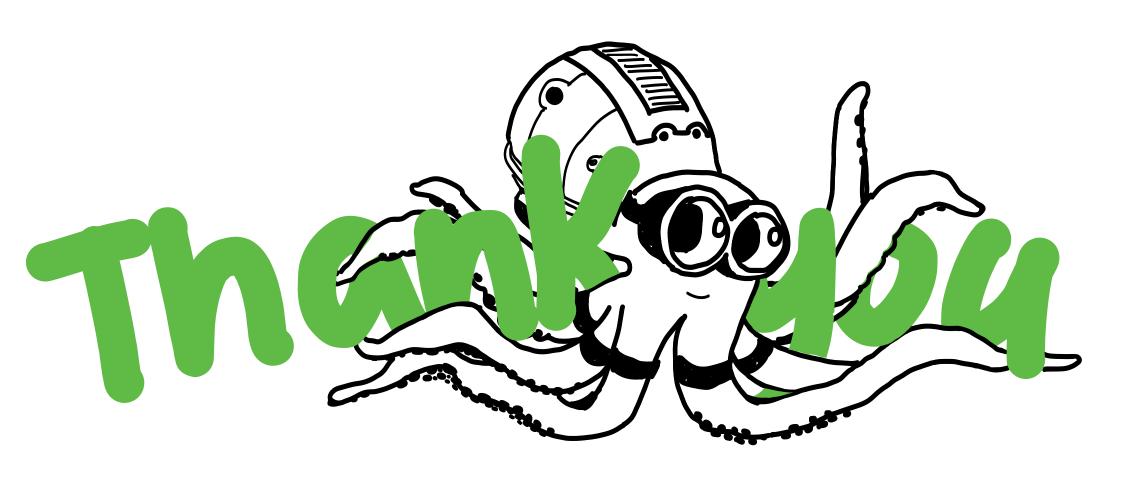
Applied algebraic topology network. Youtube channel + weekly seminar series WinCompTop - Women in computational topology. Google group + newsletter

The conferences

ATMCS = Algebraic Topology: Methods, Computations and Science every 2 years SOCG = Symposium on Computational Geometry every year

The journals

Journal of Applied and computational topology Homotopy. Homology and Applications SIAM Journal of Applied Algebra and Geometry Discrete and Computational Geometry Foundations of computational Mathematics



my e-mail: apatania @uvm.edu my office: Innovation E442