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Our aim is to detect remote synchronization in arbitrarynetworks of coupled oscillators. We do so by producingappropriate delay embeddings of the network structure.
Method
• Frustrated Kuramoto model: oscillators are the nodes of a com-plex network, interactions include a phase frustration α > 0.
• The systems reaches remote synchronization where the config-uration of phases reflects the symmetries of the underlying cou-pling network, as proved in [3].
• A sequence of network snapshots of length d is mapped into ahigh-dimensional metric space.
• Extending previous works [1, 2], we are able to detect the remotesynchronization regime through persistent homology.

Introduction

Frustrated Kuramoto Modeldθidt = ωi + λ
N

∑N
j=1 sin(θj − θi − α)

Each node of the complex network is anoscillator which continuously re-adjustsits frequency in order to minimize thedifference between its phase and the phaseof all the other oscillators.The phase frustration parameter α forcesconnected nodes to maintain a finite phasedifference.After a transient period, the system reachesa phase-locked synchronized state in whichsymmetric nodes have the same phase.
The color code

represents the phases
of nodes at a given

time in the stationary
state.

When the system settles into a stationary state the phases are grouped into
four different trajectories: θ1(t), θ2(t) = θ3(t), θ4(t) = θ7(t) and θ5(t) = θ6(t).

By increasing the frustration parameter we better separate the four
trajectories. The panels correspond to four different values of α .

Remote Synchronization

Our method can detect the different trajectories of thephases of symmetric nodes through the persistent dia-gram.
Outlook: Study the circular coordinates of the cycles detected withnon-costant frequencies.Applications to real-world networks.

Conclusions

DefinitionGiven a time-series f : t → R, a time-delay embedding is a liftto a time-series φ : t → Rd defined by
φ(t) = (f (t), f (t + τ), . . . , f (t + (d − 1)τ))

Takens theorem gives conditions under which a smooth attractorcan be reconstructed from the observations of a function.
Takens Embedding Theorem (1981)A smooth attractor can be reconstructed from the observationsformed from time delayed values of the scalar measurements.

From a periodic time series to its time-delay embedding point cloud. Figure
from Jose A. Perea, and John Harer (2012) [3]

Time-delay embedding

Periodicity and recurrence in dynamical systems are expressed ascircles in the phase space.We construct a simplicial complex approximating the topology ofthe embedded point cloud (eg. Vietoris Rips), and then create apersistence diagram for 1-dimensional homology.

Persistent diagrams of the system of oscillator at four different values of
frustration parameter α . Each circle is associated to a point in the

persistence diagram whose position indicates its robustness.
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