HOMOLOGICAL METHODS
FOR TEMPORAL NETWORKS
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Introduction

Our aim is to detect remote synchronization in arbitrary
networks of coupled oscillators. We do so by producing
appropriate delay embeddings of the network structure.

Method

e Frustrated Kuramoto model: oscillators are the nodes of a com-
plex network, interactions include a phase frustration a > 0.

e The systems reaches remote synchronization where the config-
uration of phases reflects the symmetries of the underlying cou-
pling network, as proved in [3].

e A sequence of network snapshots of length d is mapped into a
high-dimensional metric space.

e Extending previous works [1, 2], we are able to detect the remote
synchronization regime through persistent homology.

Remote Synchronize
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Each node of the complex network is an
oscillator which continuously re-adjusts - 4
its frequency in order to minimize the
difference between its phase and the phase
of all the other oscillators.
The phase frustration parameter a forces 6 5
connected nodes to maintain a finite phase The color code
difference.
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symmetric nodes have the same phase. i
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When the system settles into a stationary state the phases are grouped into
four different trajectories: 6;(t), 6>(t) = 65(t), 64(t) = 6,(t) and B5(t) = Bp(t).

By increasing the frustration parameter we better separate the four

trajectories. The panels correspond to four different values of «.

Conclustions

Our method can detect the different trajectories of the
phases of symmetric nodes through the persistent dia-
gram.

Outlook: Study the circular coordinates of the cycles detected with
non-costant frequencies.

Applications to real-world networks.
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Time-delay embedd

Definition
Given a time-series f : t —» R, a time-delay embedding is a lift
to a time-series ¢ : t — RY defined by

b(t) = (F(t), f(t + 1), ..., F(t + (d — 1)7))

Takens theorem gives conditions under which a smooth attractor
can be reconstructed from the observations of a function.

Takens Embedding Theorem (1981)
A smooth attractor can be reconstructed from the observations
formed from time delayed values of the scalar measurements.
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From a periodic time series to its time-delay embedding point cloud. Figure
from Jose A. Perea, and John Harer (2012) [3]

Results

Periodicity and recurrence in dynamical systems are expressed as
circles in the phase space.

We construct a simplicial complex approximating the topology of
the embedded point cloud (eqg. Vietoris Rips), and then create a
persistence diagram for 1-dimensional homology.
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Persistent diagrams of the system of oscillator at four different values of
frustration parameter a. Each circle is associated to a point in the

persistence diagram whose position indicates its robustness.
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